22 research outputs found

    Probabilistic Parametric Curves for Sequence Modeling

    Get PDF
    Repräsentationen sequenzieller Daten basieren in der Regel auf der Annahme, dass beobachtete Sequenzen Realisierungen eines unbekannten zugrundeliegenden stochastischen Prozesses sind. Die Bestimmung einer solchen Repräsentation wird üblicherweise als Lernproblem ausgelegt und ergibt ein Sequenzmodell. Das Modell muss in diesem Zusammenhang in der Lage sein, die multimodale Natur der Daten zu erfassen, ohne einzelne Modi zu vermischen. Zur Modellierung eines zugrundeliegenden stochastischen Prozesses lernen häufig verwendete, auf neuronalen Netzen basierende Ansätze entweder eine Wahrscheinlichkeitsverteilung zu parametrisieren oder eine implizite Repräsentation unter Verwendung stochastischer Eingaben oder Neuronen. Dabei integrieren diese Modelle in der Regel Monte Carlo Verfahren oder andere Näherungslösungen, um die Parameterschätzung und probabilistische Inferenz zu ermöglichen. Dies gilt sogar für regressionsbasierte Ansätze basierend auf Mixture Density Netzwerken, welche ebenso Monte Carlo Simulationen zur multi-modalen Inferenz benötigen. Daraus ergibt sich eine Forschungslücke für vollständig regressionsbasierte Ansätze zur Parameterschätzung und probabilistischen Inferenz. Infolgedessen stellt die vorliegende Arbeit eine probabilistische Erweiterung für Bézierkurven (N\mathcal{N}-Kurven) als Basis für die Modellierung zeitkontinuierlicher stochastischer Prozesse mit beschränkter Indexmenge vor. Das vorgestellte Modell, bezeichnet als N\mathcal{N}-Kurven - Modell, basiert auf Mixture Density Netzwerken (MDN) und Bézierkurven, welche Kurvenkontrollpunkte als normalverteilt annehmen. Die Verwendung eines MDN-basierten Ansatzes steht im Einklang mit aktuellen Versuchen, Unsicherheitsschätzung als Regressionsproblem auszulegen, und ergibt ein generisches Modell, welches allgemein als Basismodell für die probabilistische Sequenzmodellierung einsetzbar ist. Ein wesentlicher Vorteil des Modells ist unter anderem die Möglichkeit glatte, multi-modale Vorhersagen in einem einzigen Inferenzschritt zu generieren, ohne dabei Monte Carlo Simulationen zu benötigen. Durch die Verwendung von Bézierkurven als Basis, kann das Modell außerdem theoretisch für beliebig hohe Datendimensionen verwendet werden, indem die Kontrollpunkte in einen hochdimensionalen Raum eingebettet werden. Um die durch den Fokus auf beschränkte Indexmengen existierenden theoretischen Einschränkungen aufzuheben, wird zusätzlich eine konzeptionelle Erweiterung für das N\mathcal{N}-Kurven - Modell vorgestellt, mit der unendliche stochastische Prozesse modelliert werden können. Wesentliche Eigenschaften des vorgestellten Modells und dessen Erweiterung werden auf verschiedenen Beispielen zur Sequenzsynthese gezeigt. Aufgrund der hinreichenden Anwendbarkeit des N\mathcal{N}-Kurven - Modells auf die meisten Anwendungsfälle, wird dessen Tauglichkeit umfangreich auf verschiedenen Mehrschrittprädiktionsaufgaben unter Verwendung realer Daten evaluiert. Zunächst wird das Modell gegen häufig verwendete probabilistische Sequenzmodelle im Kontext der Vorhersage von Fußgängertrajektorien evaluiert, wobei es sämtliche Vergleichsmodelle übertrifft. In einer qualitativen Auswertung wird das Verhalten des Modells in einem Vorhersagekontext untersucht. Außerdem werden Schwierigkeiten bei der Bewertung probabilistischer Sequenzmodelle in einem multimodalen Setting diskutiert. Darüber hinaus wird das Modell im Kontext der Vorhersage menschlicher Bewegungen angewendet, um die angestrebte Skalierbarkeit des Modells auf höherdimensionale Daten zu bewerten. Bei dieser Aufgabe übertrifft das Modell allgemein verwendete einfache und auf neuronalen Netzen basierende Grundmodelle und ist in verschiedenen Situationen auf Augenhöhe mit verschiedenen State-of-the-Art-Modellen, was die Einsetzbarkeit in diesem höherdimensionalen Beispiel zeigt. Des Weiteren werden Schwierigkeiten bei der Kovarianzschätzung und die Glättungseigenschaften des N\mathcal{N}-Kurven - Modells diskutiert

    Probabilistic Parametric Curves for Sequence Modeling

    Get PDF
    This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key advantage of this model is given by the ability to generate multi-mode predictions in a single inference step, thus avoiding the need for Monte Carlo simulation

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore